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Abstract: Central Asia is one of the most challenged places, prone to suffering from various natural
hazards, where seismically triggered landslides have caused severe secondary losses. Research on
this problem is especially important in the cross-border Mailuu-Suu catchment in Kyrgyzstan, since
it is burdened by radioactive legacy sites and frequently affected by earthquakes and landslides. To
identify the landslide-prone areas and to quantify the volume of landslide (VOL), Scoops3D was
selected to evaluate the slope stability throughout a digital landscape in the Mailuu-Suu catchment.
By performing the limit equilibrium analysis, both of landslide susceptibility index (LSI) and VOL
were estimated under five earthquake scenarios. The results show that the upstream areas were more
seismically vulnerable than the downstream areas. The susceptibility level rose significantly with
the increase in earthquake strength, whereas the VOL was significantly higher under the extreme
earthquake scenario than under the other four scenarios. After splitting the environmental variables
into sub-classes, the spatial variations of LSI and VOL became more clear: the LSI reduced with
the increase in elevation, slope, annual precipitation, and distances to faults, roads, and streams,
whereas the highest VOL was observed in the areas with moderate elevations, high precipitation,
grasslands, and mosaic vegetation. The relative importance analysis indicated that the explanatory
power reduced with the increase in earthquake level and it was significant higher for LSI than for
VOL. Among nine environmental variables, the distance to faults, annual precipitation, slope, and
elevation were identified as important triggers of landslides. By a simultaneous assessment of both
LSI and VOL and the identification of important triggers, the proposed modelling approaches can
support local decision-makers and householders to identify landslide-prone areas, further design
proper landslide hazard and risk management plans and, consequently, contribute to the resolution
of transboundary pollution conflicts.

Keywords: earthquake impacts; volume estimation; Scoops3D; limit equilibrium method; radioactive
contamination; Tien Shan Mountains

1. Introduction

As one of the greatest natural hazards in the world, landslides occur frequently due to
the downslope movement of rock, debris, or soil, and have caused huge property damages,
personal injuries, and even loss of human lives [1,2]. In total, landslides account for

Appl. Sci. 2021, 11, 3768. https://doi.org/10.3390/app11093768 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0441-3422
https://orcid.org/0000-0001-6773-0188
https://orcid.org/0000-0001-7489-9192
https://doi.org/10.3390/app11093768
https://doi.org/10.3390/app11093768
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11093768
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11093768?type=check_update&version=1


Appl. Sci. 2021, 11, 3768 2 of 20

about 9% of the past world’s disasters [3], and the damages of landslides to society and
environment are expected to increase in the future [2,4]. The factors that can potentially
trigger landslides are numerous and interdependent, comprising both natural events
(e.g., earthquakes, droughts, intensive rainfalls, rapid snow melting, volcanic activities,
groundwater pressure, geomorphological processes, and wildfire) [5–7] and anthropogenic
activities (e.g., deforestation, agricultural cultivation, quarries, mines, and infrastructural
development) [8–10].

To minimise the loss of lives and damage to properties, the landslide susceptibility
assessment is usually the first step [11,12] and has been playing an important role in the past,
for instance, for safe and economic planning, especially for the selection of safe localities
of infrastructure [11,13]. By showing the probability of landslides in an area, a landslide
susceptibility map can be used to determine spaces with potential landslide risks [8,14].
However, in engineering practice, the potential volume of landslide (VOL), which refers to
the volume of material between the ground surface and the potential failure surface [15],
is more frequently required because (1) it is the best way to indicate the magnitude and
the realistic size of each individual landslide [16–18]; (2) with the knowledge of volume,
engineers can develop precise mitigation plans and relevant budget measures [19,20]; and
(3) it is a fundamental indicator to estimate secondary hazards (e.g., formation and break
of landslide dams, amount and duration of debris flows, isolated districts due to traffic
disruption, and long-term degradation of mountainous vegetation) [21–23]. However, due
to the complicated process of volume simulation and the lack of soil information related to
potential failure surface, the majority of previous studies related to landslides focuses on
either landslide susceptibility maps or the volume estimation of the occurred landslides in
the past [8,16], and only very few studies have attempted to predict the potential VOL [15].

In total, five types of methods have been developed for the volume estimation: field
surveys (e.g., trenching and drilling boreholes for direct measurements of the position and
geometry of geologic discontinuities), geometrical estimation (e.g., ellipsoids based on
surface displacement and morphology), empirical modelling (e.g., the California and USGS
methods for the estimation of landslide displacements), multi-temporal DEM (digital
elevation model) analysis (e.g., the differed-time analysis of past movements and the
records of recent slope movements), and physically-based modelling [1,8,16,24]. Among
them, the physically-based modelling has been recently widely used [20]. By integrating
terrain data (e.g., DEM), soil parameters (e.g., layer depth, cohesion, angle of internal
friction, and specific gravity), and hydrological parameters (e.g., pore water pressure), the
physically-based models can mimic the underground situation. Based on the mimicked
underground situations, the physically-based models can simulate the unstable slopes
and further calculate the slope stabilities (i.e., landslide susceptibility index or LSI) and
VOL [15,25]. Currently, two types of principles have been adopted in the physically-based
models for the slope stability analysis: limit equilibrium method (LEM) and finite element
method (FEM) [26,27]. LEM predefines the failure surfaces for slopes and analyses the
stabilities of those predefined failure surfaces [28,29]. In contrast to LEM, FEM does
not predefine failure surfaces [26,27]. It should be noted that most of the physically-
based models adopt LEM to carry out the slope stability analysis [15,29]. Applications,
such as CLARA [30], 3D-SLOPE [31], the script from Marchesini et al. [18], r.rotstab [32],
Scoops3D [33], and OpenLISEM [34], were developed for this purpose. In this study,
Scoops3D was selected because this model is designed to simulate the LSI and VOL
resulting from a series of plausible scenarios, such as the effects of different intensities of
earthquakes [33].

The development of land sliding is one of the most complex geomorphological pro-
cesses, and has potential relationships with the topographic variables (e.g., elevation,
slope, and aspect), land cover, soil type, precipitation pattern, and possibly also proximity
variables (e.g., distance to faults, roads, and streams) [19,35–37]. Topography is one of
the critical variables in the landslide phenomenon: elevation determines the temperature
gradient and the distribution of vegetation [38,39]; slope and aspect are related to the
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exposure to sunlight and drying wind, and they can influence the soil moisture and the
distribution of vegetation [13]. Slope stability is also strongly influenced by land cover; for
instance, due to a strong rooting system, forest trees can enhance the slope stability [40,41].
Soil characteristics are another crucial controlling variable for the occurrence of landslides,
because each soil type has its own susceptibility rate [42]. Intensive rainfall events can
also increase the probability of landslides in mountainous areas [35,43,44]. Moreover, the
proximity variables are related to lineament, anthropogenic activities, and erosion pro-
cesses [36,37,45]. However, the relative importance of these environmental variables is
different and varies from catchment to catchment. The determination of the most important
variables can allow the limited human power and budget to be investigated in terms of
maintenance and improvement of the most important variables and their conditions, and
it can also assist the engineering plan by avoiding unstable areas (e.g., in the proximity of
faults or specific topographic areas).

As a result of landslides, developing countries are facing more devastating conse-
quences due to poor infrastructure and the lack of hazard management systems [13],
for example, Kyrgyzstan and the surrounding neighbours within the Tien Shan Moun-
tains [46,47]. The Tien Shan Mountains are frequently affected by seismic activities (e.g.,
earthquakes) [48], and several strong earthquakes struck this area and its surroundings
during the last century, such as the Kemin earthquake in 1911 with a magnitude of 7.7 (or
M 7.7), the Chatkal earthquake in 1946 (M 7.6), the Khait earthquake in 1949 (M 7.4) and the
Suusamyr earthquake in 1992 (M 7.3) [49]. One hotspot of earthquakes and landslides in the
Tien Shan area is the Ferghana Valley, where the studied Mailuu-Suu catchment (Figure 1c)
is located [50,51]. In the Kyrgyz part of the Ferghana Valley, the first recorded massive acti-
vation of landslides occurred in 1954 and was followed by other events in 1958, 1969, 1979,
1988, 1993–1994, 1998, 2003–2005, and 2017 [50,52]. The studied Mailuu-Suu catchment
(Figure 1) and its neighbouring areas are also frequently affected by earthquakes [48,50].
For example, the recorded strongest earthquake (M 6.6 with a depth of 49.5 km) struck the
Jalal-Abad region (30 km far from the Mailuu-Suu catchment) on 19 August 1992, and it
cost the lives of 54 people, directly affected 86,800 people, and resulted in an economic loss
of approximately USD 130 million [53].

Besides the effects of earthquakes and landslides, the Mailuu-Suu catchment and
the nearby regions (e.g., Min-Kush and Shekaftar in the Kyrgyz Republic, Charkesar and
Yangiabad in the Republic of Uzbekistan, as well as Degmay and Istiklol in the Republic
of Tajikistan) are exposed to another important environmental problem, namely a high
risk of radioactive contamination resulting from a large portion of radioactive wastes
(e.g., tailings ponds and dumps with radionuclides like Ra-226, Pb-210, Po-210, and U-
238) [50,54]. After 1995, the conventional mines were closed [55]. However, most of the
tailing ponds and dumps were not properly rehabilitated and showed a quasi-continuous
release of radioactive contamination into the local environment [50,54]. In case of the
sudden destruction of the tailing ponds due to earthquake-induced landslides in the
Mailuu-Suu catchment, both clean and radioactive polluted soils may be substantially
expanded through the river networks and transported across the Kyrgyz–Uzbek border,
adding a potential transboundary conflict to the existing political and environmental
problems [54,56].

To date, most studies related to landslide focused on the assessment of landscape
stability and the development of LSI, but the evaluation of VOL has been largely ig-
nored [15,24]. However, proper risk management plans and engineering practices can only
be achieved by a simultaneous assessment of LSI and VOL. Central Asian countries, due
to limited research budgets, despite being frequently struck by earthquake and burdened
by radioactive legacy sites, are in particular need of research in this field. Therefore, this
study aims to (1) identify the landslide prone areas in the Mailuu-Suu catchment, utilising
maps of LSI and VOL under a series of earthquake scenarios from moderate to extreme
and (2) examine the relationships between nine environmental variables and the spatial
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distributions of LSI and VOL, in order to determine the most important variables which
should be considered as priorities in future risk management plans.
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2. Materials and Methods
2.1. Study Area

The study area of the Mailuu-Suu catchment lies in the north-eastern part of the
Ferghana Valley in Central Asia. The Mailuu-Suu river feeds the Syr Daria river, which is
the major source of irrigation water in the Ferghana Valley (Figure 1) [50]. The catchment is
located at 600–4400 m.a.s.l. with a catchment area of 530 km2, and is characterized by semi-
arid climatic conditions [48]. This study area belongs to the tectonically and seismically



Appl. Sci. 2021, 11, 3768 5 of 20

active Tien Shan Mountains [48]. These mountains are an earthquake hotspot originating
from the continent movements of India and Asia [48]. In total, 4933 earthquake events
with a magnitude greater than 3.0 were observed in the Central Asian part of the Tien Shan
Mountains during 1900 and 2020 (https://earthquake.usgs.gov; accessed on 22 March 2021
Figure 1d). The maximum magnitude of 7.7 (or M 7.7) was recorded in the eastern part of
Kazakhstan (latitude = 43.01◦ and longitude = 78.53◦) on 3 January 1911. Five earthquake
events were recently recorded in the Mailuu-Suu catchment, namely in 1983 (M 4.7), 2003
(M 4.6), 2006 (M 4.8), 2011 (M 4.6), and 2018 (M 4.6) (Figure 1e). During the last 50 years,
the catchment has experienced severe landslide disasters in the vicinity of numerous
radioactive waste tailings ponds [46,48]. The probability of the damages of earthquake and
landslide in this catchment is expected to increase in the future as a result of anthropogenic
activities, such as deforestation, overgrazing, agricultural activities and development of
infrastructure. Furthermore, the population growth will also provide more pressure on the
fragile landscape and make the study area more vulnerable to landslide [46,48].

As a former uranium mining area [52,57], in and around the Mailuu-Suu town, ura-
nium mining and milling activities started in 1946 and lasted until 1968 [48,54]. Most
of the waste dumps and tailing ponds (Figure 1c) from mining were deposited in the
moderate mountainous terrain and gently sloping alluvial areas [54,58]. Under the effect
of earthquakes, the release of radioactive soils from the tailing ponds is highly likely to run
into the river networks and further transport into the downstream areas, where agricultural
activities and dense populations can be largely affected.

2.2. Data Collection

Data collection was performed as a part of the TRANSPOND (Transboundary Mon-
itoring and Information System for Radioactive Contamination in the Event of Natural
Hazards) project. The collected data included input data for the Scoops3D (i.e., DEM, soil
parameters, and pore water pressure ratio) and nine environmental variables for the rela-
tionship analysis (i.e., elevation, slope, aspect, land cover, soil type, annual precipitation,
distance to faults, roads, and streams). The collected input data were used to perform the
simulation of Scoops3D under five earthquake scenarios (i.e., moderate, strong, severe,
violent, and extreme). The limit equilibrium method was employed in order to predefine
the potential failure surface and investigate the equilibrium state of the predefined failure
surface. As the outputs of Scoops3D, two landslide metrics (i.e., LSI and VOL) were gen-
erated. These two landslide metrics and nine environmental variables were then used to
perform the relationship analysis with the RandomForest program, in order to determine
the relative importance of the environmental variables in structuring the spatial patterns
of the landslide metrics. The scheme for the data process, modelling approaches, and the
relationship analysis is shown in Figure 2.

The DEM data were obtained from the SRTM (shuttle radar topography mission)
dataset (resolution: 30 m; www.usgs.gov; accessed on 24 November 2020) and further
downscaled into a resolution of 10 m using the bilinear resampling approach in the ArcGIS
(geographic information system) software V10.7. This DEM raster data were then converted
into the ASCII (American Standard Code for Information Interchange) grid format, as
required by Scoops3D.

The soil parameters were obtained from the Scientific Engineering Centre “GEOPRI-
BOR” (SECG) in Kyrgyzstan. In this dataset, six soil layers were measured in situ in the
Mailuu-Suu catchment. The measured parameters included layer depth, cohesion, angle
of internal friction, and specific gravity. The averaged values were used to represent the
overall conditions of soil properties in the Mailuu-Suu catchment, and they were 3.7 m,
17.7 kPa, 30.3◦, and 19.7 kN/m3, respectively (Table 1). The detailed measurement method
of the soil parameters is available in Torgoev and Li et al. [56,59].

https://earthquake.usgs.gov
www.usgs.gov
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Table 1. Input soil parameters for the simulations of Scoops3D in the Mailuu-Suu catchment (adapted
from Li et al. [56]).

Layer Depth
(m)

Cohesion
(kPa)

Angle of Internal
Friction (◦)

Specific Gravity
(kN/m3)

Ru
Coefficient

L01 4.0 11.6 36.0 19.2 0.13
L02 5.2 11.3 32.3 19.2 0.10
L03 4.0 8.8 31.0 20.0 0.12
L04 2.0 40.0 23.0 19.1 0.26
L05 2.5 - - 21.0 0.19
L06 4.3 16.7 29.0 19.6 0.12

Average 3.7 17.7 30.3 19.7 0.15

Scoops3D includes two triggering factors, namely the pore water pressure caused by
groundwater [60] and the earthquake loading [12,61]. To reflect the effect of pore water
pressure, the Ru coefficient was employed. This value refers to the pore water pressure ratio
and ranges between 0 and 1. The calculation of the Ru coefficient is based on Equation (1):

Ru =
u

γz
(1)

where Ru is the pore water pressure ratio, u is the pore water pressure, γ is the specific
gravity of the soil, and z is the depth below ground.

For the specific gravity and depth, the above-mentioned soil parameters were used.
According to the suggestion from SECG, the pore water pressure was defined as 10 kPa
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based on the in situ measured values (ranged between 6.0 and 13.8 kPa with an average of
10.0 kPa) [62]. In this sense, the value of Ru coefficient could be calculated for each layer
with an average value of 0.15 (Table 1).

To reflect the effect of the second triggering factor, the seismic loading by means
of a specified horizontal pseudo-acceleration coefficient (keq, dimensionless and scaled
as a fraction of gravity, g) was employed [33]. This specified coefficient is applied as
a uniform horizontal force to represent the effects of peak ground acceleration from an
earthquake [63,64]. The USGS (United States Geological Survey) developed a scale of the
earthquake magnitude and the corresponding peak ground acceleration (Table 2). In this
study, we applied this information and selected five typical earthquake scenarios, namely
M 5.0 (keq = 0.092, moderate), M 6.0 (keq = 0.18, strong), M 7.0 (keq = 0.34, severe), M 8.0
(keq = 0.65, violent), and M 9.0 (keq = 1.24, extreme) (Table 2).

Table 2. Summary of the earthquake magnitude and the corresponding peak ground acceleration, frequency of occur-
rence, perceived shaking and potential damage (adapted from www.usgs.gov; accessed on 22 March 2021). The selected
magnitudes and their accelerations were marked in bold and italic.

Magnitude Acceleration (g) Frequency of
Occurrence Per Year

Perceived
Shaking Potential Damage

1.0–1.9 <0.0017 Several million Not felt None
2.0–3.9 0.0017–0.039 100,000 to 1 million Weak No damage or very rarely damage
4.0–4.9 0.039–0.092 10,000 to 15,000 Light Minor damage possible

5.0–5.9 0.092–0.18 1000 to 1500 Moderate Severe damage to poorly constructed buildings.
Zero to slight damage to all other buildings.

6.0–6.9 0.18–0.34 100 to 150 Strong

Damage to a few well-built structures.
Earthquake-resistant structures survive with slight
to moderate damage. Poorly designed structures

receive moderate to severe damage.

7.0–7.9 0.34–0.65 10 to 20 Severe
Damage to most buildings, partially or completely

collapse or severe damage. Well-designed
structures are likely to receive damage.

8.0–8.9 0.65–1.24 About 1 Violent
Major damage to buildings, structures likely to be
destroyed. Moderate to heavy damage to sturdy or

earthquake-resistant buildings.
9.0 and
greater >1.24 1 per 10 to 50 years Extreme At or near total destruction—severe damage or

collapse to all buildings.

Landslide hazards are caused by a series of variables and their interactions, including
both the internal geological conditions and external environmental conditions [65,66]. In
this study, nine environmental variables were selected to perform the relationship analysis,
including elevation, slope, aspect, land cover, soil type, annual precipitation, distance to
faults, roads, and streams.

First, three topographic variables, including elevation, slope, and aspect, were ex-
tracted using the above-mentioned DEM with a spatial resolution of 10 m in ArcGIS. The
values of elevation were the original values of DEM, whereas the values of slope and
aspect were calculated using the slope–aspect function of ArcGIS. Elevation and slope were
classified into four classes in order to compare the variations of LSI and VOL across the
spatial scales: low (576–1000 m), moderate (1000–2000 m), high (2000–3000 m), and very
high (>3000 m) for elevation; gentle (0–10◦), moderate (10–25◦), steep (25–40◦), and very
steep (>40◦) for slope. Aspect was classified into eight classes: north (0–22.5 and 337.5–360),
northeast (22.5–67.5), east (67.5–112.5), southeast (112.5–157.5), south (157–202.5), south-
west (202.5–247.5), west (247.5–292.5), and northwest (292.5–337.5).

Second, the used land cover data were Globcover 2009 V2.3 from European Space
Agency (http://due.esrin.esa.int/page_globcover.php; accessed on 20 February 2021) with
a resolution of 300 m [67]. In these data, 23 types of land cover are developed. Among
them, 14 types are occurring in the Mailuu-Suu catchment. To simplify the analysis, eight

www.usgs.gov
http://due.esrin.esa.int/page_globcover.php


Appl. Sci. 2021, 11, 3768 8 of 20

classes were used (i.e., some types were merged into one type): forest (assigned to the
value of 8 for the following analysis), mosaic vegetation (assigned value: 7), grassland
(assigned value: 6), mosaic cropland/vegetation (assigned value: 5), cropland (assigned
value: 4), sparse vegetation (assigned value: 3), water/snow (assigned value: 2), and bare
areas (assigned value: 1).

Third, the soil data were extracted from the digital soil map of the world (https:
//worldmap.harvard.edu; accessed on 20 February 2021). Five out of 106 soil types
are found in the Mailuu-Suu catchment, and they are Lithosols Humic Cambisols (code:
I-Bh-2c, assigned value: 5), Lithosols Chromic Cambisols Humic Cambisols (code: I-Bc-
Bh-c, assigned value: 4), Lithosols Chromic Cambisols (code: I-Bc-2c, assigned value: 3),
Lithosols Calcic Xerosols (code: I-Xk-2c, assigned value: 2), and Calcic Xerosols (code:
Xk4-2ab, assigned value: 1).

Fourth, the annual precipitation data were obtained from WorldClim V2.1 (www.
worldclim.org; accessed on 20 February 2021) with a resolution of 1 km [68]. These data
were further downscaled into 10 m using the bilinear resampling approach in the ArcGIS.
In this study, the average value of the reference period (i.e., 1970–2000) was used as the
annual precipitation. Based on the amount, the precipitation was classified into four classes:
low (278–450 mm), moderate (450–600 mm), high (600–700 mm), and very high (>700 mm).

Fifth, three proximity variables, including distance to faults, roads, and streams were
selected. The localities of the faults were obtained from “Active Tectonics of the North-
ern Tien Shan” (http://activetectonics.asu.edu/N_tien_shan/N_tien_shan_data.html; ac-
cessed on 20 February 2021). The roads were obtained from HOTOSM (Humanitarian
OpenStreetMap, www.hotosm.org; accessed on 20 February 2021), and stream networks
were generated using the DEM data and the hydrologic analysis of ArcGIS. The value of
distance of a given point to the nearest line was calculated based on the Euclidean distance
method in ArcGIS. The distance to faults was classified into four classes using the equal
interval method: 0–5, 5–10, 10–15, and >15 km. Similarly, the four classes of distance to
roads were 0–1, 1–2, 2–3, and >3 km, and the four classes of distance to streams were 0–0.1,
0.1–0.2, 0.2–0.3, and >0.3 km.

2.3. Scoops3D Model

Scoops3D was developed by the USGS for evaluating slope stability throughout a
digital landscape represented by a DEM [33]. Scoops3D applies the limit equilibrium
method to analyse slope stability. This method predefines the potential failure surface and
investigates the equilibrium state (the equilibrium of forces or moments) of the predefined
failure surface. Assumptions of the limit equilibrium method are as follows: (1) the failure
volume consists of rigid materials and slides along a single failure plane; (2) failure occurs
simultaneously along the potential slip surface without progressive movement. The factor
of safety (FoS) is uniform everywhere along the predefined slip surfaces and one predefined
slip surface has one single FoS; and (3) the deformation and strain of the potential failure
volume, as well as dynamic loading are ignored [69]. The equilibrium state is expressed by
a ratio, FoS, and can be calculated based on Equation (2):

FoS =
R
T

(2)

where FoS is the factor of safety for the predefined failure surface, R is the upslope stabilising
force, and T is the downslope destabilising force.

Two major outputs of Scoops3D were LSI (or minimum FoS) and VOL. The LSI maps
were then classified into five susceptibility groups, namely very unstable (FoS ≤ 0.5), unsta-
ble (FoS: 0.5–1.0), moderate (FoS: 1.0–1.5), stable (FoS: 1.5–2.0), and very stable (FoS ≥ 2.0).
The VOL maps were also classified into five groups using the natural break method
in ArcGIS: very low (1.0 × 103–2.0 × 108 m3), low (2.0 × 108–4.0 × 108 m3), moderate
(4.0 × 108–6.0 × 108 m3), high (6.0× 108–8.0× 108 m3), and very high (8.0 × 108–1.0 × 109 m3).

https://worldmap.harvard.edu
https://worldmap.harvard.edu
www.worldclim.org
www.worldclim.org
http://activetectonics.asu.edu/N_tien_shan/N_tien_shan_data.html
www.hotosm.org
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2.4. Statistical Analyses

To account for variability and uncertainty of the simulated landslide metrics, 1000 ran-
dom sites across the Mailuu-Suu catchment were created, and all analyses were performed
based on these 1000 random sites. Random sites were selected using the “sp” package [70]
in R 3.5.2 [71].

Analysis of variance (ANOVA) was performed to evaluate differences in LSI and VOL
among the earthquake scenarios. Tukey’s multiple comparison tests were then carried out
where significant differences were detected (α = 0.05). This analysis was performed using
the “vegan” package [72] in R 3.5.2 [71].

As a non-parametric method, the random forest analysis was used to assess the
relationship between a large number of potential predictor variables and the response
variable [73,74]. In this study, this analysis was selected to assess the relationship between
environmental variables and landslide metrics, and further determine the relative impor-
tance of environmental variables for the explanation of variations of landslide metrics. The
analysis was conducted using the “randomForest” package [73] in R 3.5.2 [71].

3. Results
3.1. Landslide Susceptibility Index and Volume of Landslide

Maps of LSI and VOL were developed in the Mailuu-Suu catchment. The results
showed that the upstream areas were more unstable than the downstream areas under the
first four earthquake scenarios (namely moderate, strong, severe, and violent) (Figure 3a),
whereas most areas were identified as very unstable (LSI ≤ 0.5) under the extreme earth-
quake scenario (Figure 3a). Under the moderate scenario, most downstream areas were
stable or very stable, and with the increase in earthquake strength, the entire catchment
became more unstable (Figure 3a). Such patterns were also observed by comparing the
average values of LSI under the five earthquake scenarios (Figure 4). These average val-
ues were calculated to be 1.02 ± 0.60 (mean ± standard deviation or SD), 0.81 ± 0.38,
0.57 ± 0.23, 0.33 ± 0.15, and 0.23 ± 0.14 under moderate, strong, severe, violent, and
extreme earthquake scenarios, respectively (Figure 4). Each scenario was significantly
different from the other four scenarios (Tukey’s test, p < 0.05; Figure 4).
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However, a significant difference in the average values of VOL was only observed
between the extreme earthquake scenario (2.4 × 108 ± 3.1 × 108 m3) and the other four
scenarios (ranged between 2.2 × 107 and 3.3 × 107 m3) (Tukey’s test, p < 0.05; Figure 4). In
other words, although the VOL rose with the increase in earthquake strength (Figure 3b),
the average values of VOL were not significant different among the first four earthquake
scenarios (Tukey’s test, p > 0.05; Figure 4). Interestingly, the areas with large VOL (colours
of yellow, orange, and red in Figure 3b) were identified as mosaic clusters under the
extreme earthquake scenario. Such mosaic clusters indicate the most susceptible areas to
potential heavy earthquakes.

The selected nine environmental variables were classified into four to eight classes
(Figure 5), and the variations of LSI and VOL were then estimated among the classes for
each environmental variable. In details, the average values of LSI reduced with the increase
in elevation, slope, annual precipitation, distances to faults, roads, and streams (Table 3).
Concerning the land cover, the areas with cropland and sparse vegetation (dominated in the
downstream areas; ranged between 0.26 and 1.52) were stable, whereas water/snow and
bare areas (dominated in the upstream areas; ranged between 0.10 and 0.56) were identified
as unstable areas (Table 3). Concerning the soil type, it changed along the longitudinal
stream networks, and therefore the average value of LSI increased along the soil type (i.e.,
along the longitudinal stream networks) (Table 3). However, there were no clear patterns
among classes for aspect (Table 3).
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and (i) streams.

The general patterns of VOL were slightly different from the patterns of LSI. In detail,
the highest VOL was observed in moderate elevation areas (i.e., 1000-2000 m; ranged
between 2.5 × 107 and 2.6 × 108 m3) and the lowest value was in the high elevation areas
(i.e., >3000 m; ranged between 1.4 × 107 and 1.0 × 108 m3) (Table 3). The VOL reduced with
the increase in slope, whereas an opposite pattern was observed for the annual precipitation
(Table 3). Concerning the land cover, a low VOL was observed in the water/snow and
bare areas (ranged between 6.6 × 106 and 8.7 × 107 m3), whereas the high values were in
the grassland and mosaic vegetation areas (ranged between 3.0 × 107 and 4.2 × 108 m3)
(Table 3). Concerning the soil type, a high VOL was observed in the areas with soil type
I-Bc-2c (Lithosols Chromic Cambisols; ranged between 3.0 × 107 and 2.6 × 108 m3) which
distributed in the middle section of the Mailuu-Suu catchment (Table 3). However, there
were no clear patterns among classes for the aspect and three proximity variables (Table 3).
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Table 3. Averages of landslide susceptibility index and volume of landslide across the classes of environmental variables
under five earthquake scenarios.

Variable/Class
Landslide Susceptibility Index Volume of Landslide (m3)

Moderate Strong Severe Violent Extreme Moderate Strong Severe Violent Extreme

Elevation (m)
576–1000 2.03 1.45 0.96 0.56 0.32 2.0 × 107 2.3 × 107 3.1 × 107 4.5 × 107 1.3 × 108

1000–2000 1.06 0.85 0.61 0.36 0.25 2.5 × 107 2.8 × 107 3.3 × 107 3.9 × 107 2.6 × 108

2000–3000 0.74 0.62 0.45 0.25 0.20 2.4 × 107 2.4 × 107 2.6 × 107 2.8 × 107 3.1 × 108

>3000 0.64 0.53 0.38 0.21 0.13 1.4 × 107 1.4 × 107 1.5 × 107 1.5 × 107 1.0 × 108

Slope (◦)
0–10 1.58 1.17 0.79 0.46 0.29 3.6 × 107 3.8 × 107 4.2 × 107 5.4 × 107 2.0 × 108

10–25 1.01 0.81 0.58 0.34 0.24 2.5 × 107 2.8 × 107 3.4 × 107 3.9 × 107 2.7 × 108

25–40 0.74 0.61 0.45 0.25 0.19 1.2 × 107 1.3 × 107 1.4 × 107 1.5 × 107 2.3 × 108

>40 0.60 0.50 0.36 0.19 0.17 9.4 × 106 1.1 × 107 1.1 × 107 1.1 × 107 2.4 × 108

Aspect (◦)
N (0–22.5, 337.5-360) 0.86 0.70 0.50 0.28 0.20 2.4 × 107 2.6 × 107 2.8 × 107 3.0 × 107 2.3 × 108

NE (22.5–67.5) 1.04 0.83 0.59 0.34 0.25 1.4 × 107 1.4 × 107 1.7 × 107 1.9 × 107 2.6 × 108

E (67.5–112.5) 1.18 0.92 0.65 0.38 0.25 1.8 × 107 2.4 × 107 2.4 × 107 3.2 × 107 2.2 × 108

SE (112.5–157.5) 1.14 0.88 0.62 0.35 0.24 2.0 × 107 2.2 × 107 3.2 × 107 3.8 × 107 2.0 × 108

S (157.5–202.5) 1.00 0.79 0.55 0.32 0.23 2.2 × 107 2.4 × 107 2.5 × 107 3.5 × 107 2.7 × 108

SW (202.5–247.5) 1.09 0.86 0.61 0.35 0.25 2.6 × 107 2.8 × 107 3.7 × 107 3.8 × 107 2.9 × 108

W (247.5–292.5) 1.03 0.81 0.57 0.34 0.23 2.1 × 107 2.3 × 107 2.5 × 107 3.1 × 107 2.3 × 108

NW (292.5–337.5) 0.87 0.70 0.50 0.29 0.20 3.0 × 107 3.1 × 107 3.2 × 107 3.4 × 107 2.1 × 108

Land cover
Forest 0.75 0.62 0.45 0.25 0.21 2.1 × 107 2.4 × 107 2.5 × 107 2.5 × 107 3.2 × 108

Mosaic vegetation 0.85 0.71 0.51 0.30 0.25 3.0 × 107 3.0 × 107 3.3 × 107 3.5 × 107 4.2 × 108

Grassland 0.87 0.71 0.52 0.30 0.21 3.3 × 107 3.4 × 107 3.9 × 107 4.2 × 107 3.0 × 108

Cropland/vegetation 0.96 0.78 0.56 0.33 0.24 2.3 × 107 2.5 × 107 2.9 × 107 3.6 × 107 2.6 × 108

Cropland 1.52 1.07 0.70 0.39 0.28 2.0 × 107 2.2 × 107 2.6 × 107 3.0 × 107 2.3 × 108

Sparse vegetation 1.40 1.09 0.76 0.45 0.26 1.1 × 107 1.6 × 107 2.1 × 107 2.6 × 107 1.4 × 108

Water/Snow 0.51 0.43 0.30 0.15 0.15 6.6 × 106 6.6 × 106 6.6 × 106 6.6 × 106 7.7 × 107

Bare areas 0.56 0.46 0.33 0.17 0.10 1.1 × 107 1.2 × 107 1.2 × 107 1.3 × 107 8.7 × 107

Soil type
I-Bh-2c 0.73 0.61 0.44 0.25 0.19 1.5 × 107 1.6 × 107 1.7 × 107 1.8 × 107 2.4 × 108

I-Bc-Bh-c 0.71 0.59 0.43 0.24 0.19 2.7 × 107 2.7 × 107 2.8 × 107 2.9 × 107 3.2 × 108

I-Bc-2c 0.83 0.68 0.50 0.28 0.21 3.0 × 107 3.2 × 107 3.7 × 107 4.1 × 107 2.6 × 108

I-Xk-2c 1.30 1.03 0.73 0.44 0.29 1.7 × 107 1.9 × 107 1.9 × 107 2.7 × 107 2.0 × 108

Xk4-2ab 2.17 1.53 0.99 0.58 0.33 1.4 × 107 2.2 × 107 3.1 × 107 4.6 × 107 1.4 × 108

Precipitation (mm)
278–400 1.91 1.38 0.92 0.54 0.31 1.6 × 107 2.2 × 107 2.8 × 107 3.9 × 107 1.3 × 108

400–550 1.21 0.96 0.69 0.41 0.29 1.6 × 107 1.8 × 107 2.1 × 107 3.3 × 107 2.2 × 108

550–700 0.76 0.63 0.46 0.26 0.20 2.1 × 107 2.2 × 107 2.3 × 107 2.4 × 107 2.6 × 108

>700 0.76 0.63 0.46 0.26 0.19 3.3 × 107 3.5 × 107 4.3 × 107 4.5 × 107 2.9 × 108

Distance to faults (km)
0–5 1.38 1.06 0.73 0.43 0.28 2.0 × 107 2.3 × 107 2.6 × 107 3.5 × 107 2.1 × 108

5–10 0.80 0.65 0.46 0.26 0.17 2.7 × 107 2.8 × 107 3.3 × 107 3.7 × 107 2.3 × 108

10–15 0.74 0.61 0.45 0.25 0.19 2.6 × 107 2.7 × 107 3.1 × 107 3.2 × 107 2.9 × 108

>15 0.81 0.67 0.49 0.28 0.23 1.4 × 107 1.5 × 107 1.6 × 107 1.7 × 107 2.6 × 108

Distance to roads (km)
0–1 1.28 0.98 0.68 0.40 0.26 2.2 × 107 2.4 × 107 2.9 × 107 3.5 × 107 2.1 × 108

1–2 0.80 0.66 0.47 0.27 0.18 2.3 × 107 2.5 × 107 2.6 × 107 3.4 × 107 2.6 × 108

2–3 0.77 0.63 0.46 0.26 0.22 2.2 × 107 2.2 × 107 2.8 × 107 3.0 × 107 3.8 × 108

>3 0.76 0.63 0.46 0.26 0.19 2.4 × 107 2.5 × 107 2.8 × 107 2.9 × 107 2.1 × 108

Distance to streams (km)
0–0.1 1.10 0.88 0.63 0.37 0.24 4.0 × 107 4.3 × 107 5.3 × 107 6.5 × 107 2.5 × 108

0.1–0.2 1.07 0.85 0.60 0.35 0.24 1.5 × 107 1.6 × 107 1.7 × 107 1.9 × 107 2.1 × 108

0.2–0.3 0.97 0.78 0.55 0.32 0.24 1.6 × 107 1.7 × 107 1.8 × 107 2.1 × 107 2.5 × 108

>0.3 0.94 0.73 0.51 0.28 0.20 1.6 × 107 1.7 × 107 1.9 × 107 2.1 × 107 2.5 × 108

3.2. Relationship between Landslide Metrics and Environmental Variables

The relative importance of each environmental variable for the explanation of land-
slide metrics was performed using the machine-learning-based random forest analysis.
The results indicated that the explanatory powers of LSI (ranged between 28.47% and
87.85%) were significantly higher than that of VOL (ranged between 11.07% and 19.22%)
(Figure 6). The explanatory power reduced with the increase in the earthquake level, except
in the extreme scenario of VOL (Figure 6). Overall, the most important environmental
variable was distance to faults (ranged between 30.28% and 46.05%) for the explanation
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of LSI, followed by slope, annual precipitation, and elevation (Figure 6a), whereas annual
precipitation (ranged between 10.91% and 37.14%) was identified as the most important
environmental variable for the explanation of VOL, followed by elevation, slope, and
distance to faults (Figure 6b). The explanatory powers of all the other five environmental
variables were relatively low, and the variable with the lowest explanatory power was
aspect (LSI: 5.59−16.16%; VOL: 1.04−4.86%; Figure 6).
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4. Discussion

The generation of landslide susceptibility maps at an early stage of landslide risk
assessment has a crucial importance for safe and economic planning. By simultaneous
assessment of both LSI and VOL, this study developed landslide susceptibility maps for
the seismic prone Mailuu-Suu catchment under five earthquake scenarios. The simulations
made in this study can undoubtedly improve the understanding of the seismically vulner-
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able areas and the important triggering variables at this radioactive polluted catchment.
Nevertheless, we are aware of the shortcomings of the present simulations, and suggestions
for the follow-up studies are discussed in this section.

4.1. Landslide Susceptibility Index and Volume of Landslide

Referring to the specificity of geologic and natural conditions, the Mailuu-Suu catch-
ment is a region with frequent high-seismic and geodynamic activities [13,48,52]. The
landslide susceptibility assessment by means of LSI and VOL indicates the probability of
landslides in this catchment. The floodplain at the mouth of the Mailuu-Suu catchment
was identified as the most stable zone. This area is mainly flatland near the Ferghana Valley.
The identification of floodplain as the stable zone was also reported in the Chittagong Hilly
Areas of Bangladesh by Rabby and Li [42]. The vulnerable areas to landslide were found to
be dominated in the upstream areas (Figure 3). This is slightly different from the findings
of Torgoev et al. who reported that landslides frequently occurred in the mid-stream of the
Mailuu-Suu [50]. A possible reason for the different findings lies in the definition of the
upstream and mid-stream areas. In the present study, the defined upstream areas included
both high and moderate mountain (i.e., mid-stream) areas. In addition, the Scoops3D
model considers the influence of groundwater on local landslides as well. This makes the
simulation more precise than the method of geological survey [33]. As an advantage of
Scoops3D, a series of earthquake scenarios, ranging between moderate (M 5.0) and extreme
(M 9.0), can be incorporated into the scenario analysis. It is reasonable that the values
of LSI reduced with the increase in earthquake level, and a similar finding was reported
by Li et al. [56]. Under the most frequently occurred earthquake level in the Mailuu-Suu
catchment (i.e., the moderate earthquake scenario), the downstream areas were stable or
very stable, where most residents and a large number of radioactive tailing ponds exist,
indicating the relatively low influence of landslides on society and radioactive problems in
this catchment. Nevertheless, this general spatial pattern would be quite different once
the hazard level rises; for example, under the extreme earthquake scenario, the entire
Mailuu-Suu catchment was classified as unstable area in the aspect of LSI.

Similar patterns of LSI were not observed for the VOL in this catchment. The VOL
did not rise substantially with the increase in the earthquake level under M 8.0 (i.e., from
moderate to violent). The VOL was, however, significantly higher under the extreme sce-
nario than under the other four scenarios. By means of differential synthetic aperture radar
interferometry analysis, Piroton et al. [52] found slow displacements of soil columns and
concluded the existence of long-term slow sliding activities in the Mailuu-Suu catchment.
Under the effect of low earthquake strength (e.g., moderate to severe), the VOL maintained
a low level with a low number of mosaic clusters. With the triggering of violent or extreme
earthquakes, these long-term slow displacements of soil columns could change into a
catastrophic release of volume with a large number of mosaic clusters, as indicated in this
case study. Besides the effect of earthquakes, a large number of landslides were caused by
other types of hazards in this catchment. For example, in April 1958, about 50% of tailing
materials were released from the radioactive tailing pond 7 into the nearby river network.
The cause of this accident were the combined effects of heavy rainfall and a poor design of
the tailing dam in the Mailuu-Suu catchment [46,51].

4.2. Relationship between Landslide Metrics and Environmental Variables

As one of the most disastrous natural hazards, land sliding is one of the complex
geomorphic processes that is affected by several triggering factors, which differ greatly
from region to region [9,36,37]. The relative importance analysis indicated that distance
to faults, precipitation, slope, and elevation were more relevant to the structure of the
spatial patterns of LSI and VOL than other environmental variables. The influence of fault
lines on the landscape vulnerability has been long recognised [13,50], i.e., the closer to
the fault lines, the more dangerous the landscape. The importance of precipitation was
supported by the finding of Dai and Lee [75] who investigated the relationship between the
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occurrence of landslides and precipitation in Hong Kong, and concluded that a 12 h rolling
precipitation is most important factor in predicting the number of landslides. Similarly,
Piroton et al. [52] reported that intensive precipitations and rapid melting contributed to
the activation of some landslides in 2017 in the Mailuu-Suu catchment. The importance
of slope has been mentioned in many previous studies [8,13,42]. Generally, landslides
do not occur on a gentle slope, as the shear stress is too low, and an increase in slope
gradient can potentially raise the likelihood of land sliding [15]. A colluvial landslide event
mainly occurs in the moderate slope zone, as shown in Ma [15] and Zhou [65]. However,
LSI and VOL showed linear correlations with the slope in our case. The importance of
elevation lies in the fact that it controls temperature and vegetation. The occurrences of
landslides rose with the increase in elevation before reaching a threshold elevation, where
the landslide probability decreases as a result of soil characteristics or other geotechnical
parameters [13,61]. This is in line with our findings in which the highest VOL was observed
in the moderate elevation zones. As the third topographic variable used in this study, the
aspect was relatively unimportant, but it was found to be important in the study of Three
Gorges Reservoir in China, where the southeast aspect represented the highest occurrence
probability of colluvial landslides [65]. The other two proximity variables (i.e., distance to
roads and streams) were also identified as unimportant triggers in structuring the spatial
patterns of LSI and VOL. Similar findings were reported by Polykretis et al. [13] in the
Krios and Krathis catchments in Greece. However, the importance of proximity variables
has been found in few studies; for example, 43% of the colluvial landslides occurred within
the range of 50 m from roads and 38% within the range of 200 m from streams in the Three
Gorges Reservoir in China [65].

By comparing the spatial distribution of LSI along the gradients of environmental
variables, LSI was found to be negatively correlated to elevation, slope, precipitation,
distances to faults, roads, and streams. Such relationships reflect the importance of these
environmental variables. However, the patterns of land cover can also reflect the spatial
distribution of LSI. Due to the effect of vegetation, Chalkias et al. [76] found that most
cropland areas were vulnerable to landslides on the Peloponnese Peninsula in Greece. This
is in contrast with our results, where the most stable zones were dominated by cropland
and sparse vegetation in the downstream areas, and the unstable zones were located in
the high mountain with water/snow and bare areas. The high susceptibility level in the
snow and bare areas was also proven by the studies of Rahman et al. [37] and Chalkias
et al. [76], where the presence of rock masses does not support any vegetation in the higher
slopes. Based on the same effect of vegetation, the forest cover can protect the mountainous
slopes from climatic effects and mass movements as the roots hold the underneath soil and
keep the slopes stable [37]. However, most forest areas cover the high- to mid-streams in
the Mailuu-Suu catchment, where a high susceptibility level was identified. The spatial
distribution of soil types was also in accordance with LSI; therefore, a clear correlation
between LSI and soil type was indicated in this study.

Slight differences in such correlations were observed between VOL and LSI. However,
it is necessary to note that the explanatory power of LSI (79.06-87.85% under the first
four earthquake scenarios) was significantly higher than that of VOL (only 11.07-16.21%
under the first four earthquake scenarios). Therefore, the relationship analysis between
LSI and the environmental variables is more meaningful than that between VOL and the
environmental variables from a statistical point of view.

4.3. Shortcomings of the Modelling Approach

This section discusses the main limitations of this study.
First, this study faced challenges by the lack of adequate input data: (a) the input soil

data were calculated based on six representative samples instead of a large number of soil
samples; (b) as the grid layer of underground water was not available in this catchment,
one averaged pore water pressure value was used for the entire catchment; and (c) the
DEM with a resolution of 10 m was used in this simulation, and the generated simulations
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with low resolution data may lead to potential inaccuracies (e.g., a lack of representation of
the actual on-ground topographic features and an increased loss of detailed properties of
LSI and VOL). In this sense, a high resolution of DEM, for instance, the airborne LIDAR
(the light detection and ranging, at a resolution of 30 cm or better) data, may support
increasing the precision of the simulations, but it will increase the computation time
and produce a large size of output files, and this will cause further problems (e.g., longer
computation time for further analyses, beyond the limits of the programs, and requirements
of advancement in computing facilities which can handle extremely large datasets) for the
following statistical analyses.

Second, the limitations of Scoops3D itself can also affect the simulated results: (a)
the limit equilibrium method does not allow progressive failure, and failures can only
occur simultaneously along one single failure surface; (b) Scoops3D does not take the site-
specific features (e.g., discontinuity of local soil layer, external loads, non-linear strengths,
partially submerged slopes, tension cracks, and complex failure-surface geometry) into
consideration; and (c) the volume of failure is predefined with the potential slip surfaces.
This predefined value can lead to changes in the simulated results and strongly depends
on the experiences of the modellers [15].

Third, from the data preparation to the result generation, uncertainties may be in-
troduced at each stage for the physically-based models. The input variables (i.e., soil
parameters and pore pressure) were determined in the laboratory or from scientific expe-
riences. The actual situation of soil and groundwater might be represented with limited
accuracy due to a limited number of samples. In addition, the temporal variability of soil
materials and pore water pressure caused by long-term erosion, land cover change and cli-
mate change (e.g., temperature and precipitation) cannot be considered in the simulations
of Scoops3D. Uncertainties regarding the geometric parameters can be introduced by the
predefined slip surface. Some simulations assume a shallow-seated landslide, while others
assume a deep-seated landslide. Moreover, other site-specific features, as mentioned above,
can also contribute to geometric uncertainties [33]. Concerning the earthquake loading,
the proposed correlation between the horizontal pseudo-acceleration coefficient and the
earthquake magnitude was obtained based on scientific experiences, but was not always in
absolute agreement, since the damage of an earthquake can be also affected by many other
factors, including the earthquake’s depth, its geographical features, and so on. In this sense,
follow-up studies should be carried out, particularly when sufficient in situ measurements
of the geographical parameters, soil properties, and underground pore water pressure in
the Mailuu-Suu catchment have been obtained.

Last but not least, a calibration between the simulated and measured landslide met-
rics could not be performed due to the lack of historical earthquake-induced landslide
distributions and VOL in this remote area. However, the installation of a turbidity moni-
toring system is currently being investigated [77], which would allow calibration in the
follow-up studies.

5. Conclusions

To date, the risk monitoring program plays an increasingly important role in emer-
gency management because it can strengthen the sustainable development of society, the
economy, and the environment [78]. As the first step of the risk monitoring program, an
understanding of earthquake-induced landslides by means of the modelling approaches is
essential in the landslide risk management process. This is especially important in Central
Asia, where a large number of radioactive legacy sites are likely to be destroyed under
the effect of landslides, leading to immeasurable environmental and political problems.
A combined assessment of both LSI and VOL under a series of earthquake scenarios can
undoubtedly (1) deepen the understanding of the formation mechanism and the process of
landslides in the seismic prone areas and (2) assist the disaster management authorities to
develop site-specific mitigation measures for landslide hazards, in order to avoid damages
to the infrastructure and facilities, as well as loss of human lives in the future.
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This study concluded that the susceptibility level rose with the increase in earthquake
strength, and the upstream areas were more seismically vulnerable than the downstream
areas in the Mailuu-Suu catchment. The developed maps of LSI and VOL can serve
as a guideline to trigger more detailed, site-specific investigations and analyses in this
catchment. The identification of important triggers of landslides shall be considered by
the local stakeholders and decision-makers in the landscape administration and land use
design; in particular, localities of new infrastructures and facilities should be far from
fault lines and areas with high precipitation, slope, and elevation in the Mailuu-Suu
catchment. Although forests were not classified as stable areas in this study, proper land
use planning and strict forest preservation measures are still highly recommended, as
the bare areas were more vulnerable to landslides than forests within the same elevation
zones. We are also aware that optimal input data and adequate calibration data from
the historical earthquake-induced landslide events are necessary to perform an ideal
model. The follow-up calibration studies are, therefore, needed in order to increase the
simulation precision of physically-based models. Last but not least, the proposed modelling
approaches in this study can save human and financial resources for the intensive in
situ measurements of geometric profiles over space and time, and shall be, therefore,
recommended for other geological disaster-prone regions that are either not reachable
due to the natural geographical barriers or poorly equipped in terms of earthquake and
landslide measurement technology.
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